Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2332665, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517731

RESUMO

With the large number of atypical cases in the mpox outbreak, which was classified as a global health emergency by the World Health Organization (WHO) on 23 July 2022, rapid diagnosis of mpox and diseases with similar symptoms to mpox such as chickenpox and respiratory infectious diseases in the early stages of viral infection is key to controlling the spread of the outbreak. In this study, antibodies against the monkeypox virus A29L protein were efficiently and rapidly identified by combining rapid mRNA immunization with high-throughput sequencing of individual B cells. We obtained eight antibodies with a high affinity for A29L validated by ELISA, which were was used as the basis for developing an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobeads (SiTQD-ICA). The SiTQD-ICA biosensor utilizing M53 and M78 antibodies showed high sensitivity and stability of detection: A29L was detected within 20 min, with a minimum detection limit of 5 pg/mL. A specificity test showed that the method was non-cross-reactive with chickenpox or common respiratory pathogens and can be used for early and rapid diagnosis of monkeypox virus infection by antigen detection. This antibody identification method can also be used for rapid acquisition of monoclonal antibodies in early outbreaks of other infectious diseases for various studies.


Assuntos
Varicela , Doenças Transmissíveis , Mpox , Humanos , Monkeypox virus/genética , Mpox/diagnóstico , Imunização , Anticorpos Monoclonais , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro
2.
Signal Transduct Target Ther ; 8(1): 172, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117161

RESUMO

Monkeypox has been declared a public health emergency by the World Health Organization. There is an urgent need for efficient and safe vaccines against the monkeypox virus (MPXV) in response to the rapidly spreading monkeypox epidemic. In the age of COVID-19, mRNA vaccines have been highly successful and emerged as platforms enabling rapid development and large-scale preparation. Here, we develop two MPXV quadrivalent mRNA vaccines, named mRNA-A-LNP and mRNA-B-LNP, based on two intracellular mature virus specific proteins (A29L and M1R) and two extracellular enveloped virus specific proteins (A35R and B6R). By administering mRNA-A-LNP and mRNA-B-LNP intramuscularly twice, mice induce MPXV specific IgG antibodies and potent vaccinia virus (VACV) specific neutralizing antibodies. Further, it elicits efficient MPXV specific Th-1 biased cellular immunity, as well as durable effector memory T and germinal center B cell responses in mice. In addition, two doses of mRNA-A-LNP and mRNA-B-LNP are protective against the VACV challenge in mice. And, the passive transfer of sera from mRNA-A-LNP and mRNA-B-LNP-immunized mice protects nude mice against the VACV challenge. Overall, our results demonstrate that mRNA-A-LNP and mRNA-B-LNP appear to be safe and effective vaccine candidates against monkeypox epidemics, as well as against outbreaks caused by other orthopoxviruses, including the smallpox virus.


Assuntos
COVID-19 , Mpox , Animais , Camundongos , Vaccinia virus/genética , Monkeypox virus , Mpox/prevenção & controle , Vacinas Combinadas , Camundongos Nus , Proteínas Virais/genética , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA